Type: \(\displaystyle A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{1}_1\))
Simple basis: 1 vectors: (1, 2, 2, 1, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_3+A^{1}_1
simple basis centralizer: 4 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0, 0, 1, 0, 0), (1, 0, 0, 0, 0)
Number of k-submodules of g: 31
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{1}}+12V_{\omega_{1}}+18V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, -1, -1, -1)(0, 0, -1, -1, -1)g_{-13}-\varepsilon_{3}-\varepsilon_{4}
Module 21(0, 0, -1, 0, -1)(0, 0, -1, 0, -1)g_{-9}-\varepsilon_{3}-\varepsilon_{5}
Module 31(0, 0, -1, -1, 0)(0, 0, -1, -1, 0)g_{-8}-\varepsilon_{3}+\varepsilon_{5}
Module 41(0, 0, 0, 0, -1)(0, 0, 0, 0, -1)g_{-5}-\varepsilon_{4}-\varepsilon_{5}
Module 51(0, 0, 0, -1, 0)(0, 0, 0, -1, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 61(0, 0, -1, 0, 0)(0, 0, -1, 0, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 71(-1, 0, 0, 0, 0)(-1, 0, 0, 0, 0)g_{-1}-\varepsilon_{1}+\varepsilon_{2}
Module 81(1, 0, 0, 0, 0)(1, 0, 0, 0, 0)g_{1}\varepsilon_{1}-\varepsilon_{2}
Module 92(-1, -1, -2, -1, -1)(0, 1, 0, 0, 0)g_{2}
g_{-19}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 101(0, 0, 1, 0, 0)(0, 0, 1, 0, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 111(0, 0, 0, 1, 0)(0, 0, 0, 1, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 121(0, 0, 0, 0, 1)(0, 0, 0, 0, 1)g_{5}\varepsilon_{4}+\varepsilon_{5}
Module 132(0, -1, -2, -1, -1)(1, 1, 0, 0, 0)g_{6}
g_{-18}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 142(-1, -1, -1, -1, -1)(0, 1, 1, 0, 0)g_{7}
g_{-17}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 151(0, 0, 1, 1, 0)(0, 0, 1, 1, 0)g_{8}\varepsilon_{3}-\varepsilon_{5}
Module 161(0, 0, 1, 0, 1)(0, 0, 1, 0, 1)g_{9}\varepsilon_{3}+\varepsilon_{5}
Module 172(0, -1, -1, -1, -1)(1, 1, 1, 0, 0)g_{10}
g_{-16}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
Module 182(-1, -1, -1, 0, -1)(0, 1, 1, 1, 0)g_{11}
g_{-15}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 192(-1, -1, -1, -1, 0)(0, 1, 1, 0, 1)g_{12}
g_{-14}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 201(0, 0, 1, 1, 1)(0, 0, 1, 1, 1)g_{13}\varepsilon_{3}+\varepsilon_{4}
Module 212(0, -1, -1, 0, -1)(1, 1, 1, 1, 0)g_{14}
g_{-12}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
Module 222(0, -1, -1, -1, 0)(1, 1, 1, 0, 1)g_{15}
g_{-11}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
Module 232(-1, -1, -1, 0, 0)(0, 1, 1, 1, 1)g_{16}
g_{-10}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 242(0, -1, -1, 0, 0)(1, 1, 1, 1, 1)g_{17}
g_{-7}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
Module 252(-1, -1, 0, 0, 0)(0, 1, 2, 1, 1)g_{18}
g_{-6}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
Module 262(0, -1, 0, 0, 0)(1, 1, 2, 1, 1)g_{19}
g_{-2}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
Module 273(-1, -2, -2, -1, -1)(1, 2, 2, 1, 1)g_{20}
h_{5}+h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-20}
\varepsilon_{1}+\varepsilon_{2}
0
-\varepsilon_{1}-\varepsilon_{2}
Module 281(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{1}0
Module 291(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{3}0
Module 301(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{4}0
Module 311(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{5}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 1
Heirs rejected due to not being maximally dominant: 23
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 23
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by 0
Potential Dynkin type extensions: A^{1}_2, 2A^{1}_1,